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Abstract

On the base of modern probability approach the theoretical model of turbulent relative motion of particles in the turbulent flow is
developed. Closed equation for probability density function of coordinates and velocities of two particles in turbulent flow is obtained.
The system of equations for balance of mass, averaged velocities and intensities of turbulent chaotic motion of particles with account of
correlated motion of particles are deduced. The closed expressions for intensity of relative chaotic motion between particles are obtained
on the base of probability density function of particles displacement with correlation effects. The correlation functions, intensity of rel-
ative turbulent motion and relative diffusion coefficients of particles are numerically investigated. The calculation results are compared
with data of large eddy simulations. The results of calculation intensity of droplets relative motion in atmospheric conditions are
presented.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In gas flows the rate of particles or droplets coagulation
depends on their relative velocity and collision frequencies.
The relative velocity of particles is determined by the exter-
nal forces, for example, mass forces as well as particles
intensity of random motion in the turbulent flow. The paper
is devoted to investigation the relative turbulent transport
of particles with various sizes. The entrainment of particles
in turbulence depends on their inertia. Small particles,
whose dynamic relaxation time is much less than the inte-
gral time scale of turbulence are completely entrained in
the turbulent motion of energy containing eddies. Without
consideration the effect of particles inertia on the degree of
entrainment in the small-scale turbulence, the averaged rel-
ative velocity between particles is determined by a gradient
of a carrier phase velocity on a distance of order the sum of
particles diameters [1,2]. In [3], within the framework of the
model outlined in [1] the small-particles coagulation kernel
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was calculated with allowance for Brownian and relative
turbulent diffusion. In [3] the effect of relative averaged
velocity slips between particles due to gravity force was
includes in efficiency of particles coagulation. In a gas flow
small inertia particles have diameters lesser than Kolmogo-
rov space micro scale. For such particles relative velocity
due to gradient of fine grained turbulence on a distance of
particles diameters is negligible. Trajectories of these parti-
cles are well correlated and chaotic relative velocity of small
inertia particles equal to zero.

For inertial particles with dynamic relaxation time of
order integral time macro scale of turbulence the intensity
of their chaotic motion is determined by entrainment of
particles into turbulent motion of energy containing eddies.
These particles do not participate into small scale high fre-
quency turbulence. In [4] it is assumed, that trajectories of
inertial particles are not correlate. In [4] by analogy of
kinetic theory of gaseous the energy of random motion
of two particles was set as a sum of energy of chaotic
motion of the particles. The degree of entrainment of
particles into turbulent motion of large eddies was taken
into account in [5]. In the [5] the approximate distribution
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Nomenclature

Da,ik coefficient of turbulent diffusion of ath particles
Dab,ik coefficient of turbulent relative diffusion be-

tween two particles
D� coefficient of turbulent diffusion of inertia less

particles
dp diameter of a particle
fa, fajb unconditional and conditional response func-

tions
Ga, Gab probability density functions of particles trans-

fer
g gravity acceleration
LE Euler integral space scale
Na distribution function of one type particles in

space
Nab distribution function of particles of two types in

space
qa, qajb unconditional and conditional response func-

tions
Rek Reynolds number calculated on Taylor micro-

scale
TE Euler integral temporary scale
TL Lagrange temporary scale
Ta temporary scale of gas velocity fluctuations

along ath particle path
U actual velocity of fluid phase
u velocity fluctuations of fluid phase
VðpÞa actual velocity of the ath particle
Va Euler velocity of ath particle

v
ðpÞ
a velocity fluctuations of ath particle

XðpÞa Lagrange position of ath particle
xa Euler position of ath particle
Yab, yab relative distances between two particles
Wa averaged velocity of ath particle due to mass

force

Wab averaged relative velocity between two particles
wab turbulent relative velocity between two particles

Greek symbols

ca nondimensional relative velocity of ath particle
D total dispersion of particles turbulent transfer
d(x) three-dimensional Dirac delta-function
e turbulent dissipation rate
K dispersion of particles turbulent transfer due to

inertia
k dispersion of particles transfer with energy con-

taining eddies
l ratio between Lagrange and Euler temporary

scales
qab coefficient of two particles velocity correlation
ra, rab second moments of particles velocity fluctua-

tions
sa dynamic relaxation time of ath particle
Uab indicator function for two particles
uab probability density function of two particles

velocity distribution
v structural parameter of turbulent flow
WE Euler correlation function
WðpÞa unconditional gas velocity correlation function

WðpÞajb conditional gas velocity correlation function

Xa parameter of inertia of ath particle

Subscripts

a,b particles ath and bth types
h i denotes result of averaging over an ensemble of

turbulent realizations
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of turbulent energy of carrying phase was involved for cal-
culation the intensity of random motion of particles with
different sizes. But in [5] was assumed, that trajectories of
inertial particles with equal sizes are completely correlated.
So, in a turbulent gas flow inertial particles with equal
diameters are not colliding with each other.

The large eddy simulations (LES) and direct numerical
simulations was used in [6,7] for investigation the particles
collisions in the homogeneous turbulent motion. In these
works the role of trajectory correlations of inertial particles
are brightly illustrated. In has been established that inertia
less particles move in very correlated manner. With increas-
ing particles inertia correlation between particles trajectories
destroys and the relative turbulent velocity increases. For
very inertial particles, whose dynamic relaxation times are
mach larger then integral time scales of turbulence, the inten-
sity of all turbulent motion of dispersed phase fall down. In
[6] theoretical model for calculation the relative motion of
particles with equal sizes was suggested. For calculation
intensity of particles random motion was used Boltzmann
hypothesis from kinetic theory of gaseous. The approach
[6] is valid for particles with equal sizes and do not take into
account effect of reduction of correlation between particles
with increasing relative distance. In the models [6] the rela-
tive turbulent diffusion of particles is not considered. But
the contribution of relative turbulent diffusion of particles
in relative turbulent motion of particles is very important.

The perspective modern approach for investigation par-
ticles relative chaotic motion based on probability density
function (PDF) for particles coordinates and velocities
was suggested in [8]. The closing PDF equation has been
achieved due to assumption that relative displacement of
particles is a result only of relative random velocity
between particles. The model [8] is valid for description
relative chaotic motion of particles with equal sizes. We
can note that in the specific case of particles with equal
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diameters without mass forces the results of present work
coincides with data in [8].

In the present paper we developed a theoretical model of
relative turbulent motion of particles with different diame-
ters. We include the average relative velocities of particles
due to mass forces. The closed PDF equation for coordinates
and velocities of two different particles in inhomogeneous
turbulence was obtained. Closed system of equations for
describing processes of mass transfer due to particles relative
motion is found. For closing terms, which describe correla-
tion between particles trajectory, hypothesis by Corrsin [9]
is involved. The calculation results are compared with LES
data. Effects connected with particles inertia, various parti-
cles sizes and averaged velocities slip of particles is illustrated
on an example of turbulent flow at atmospheric conditions.

2. Equation for PDF

2.1. Averaged and fluctuating quantities

In the present paper we do not investigate the variation
the turbulent parameters of carrying gas due to presence of
dispersed phase. In the gas flow the diameters of particles is
lesser than Kolmogorov space micro scale. Equations for
relative motion of two spherical solid particles a, b in a
gas flow may be written in a form

dVðpÞa

dt
¼ 1

sa
U XðpÞa ; t
� �

þWa � VðpÞa

� �
;

dXðpÞa

dt
¼ VðpÞa ; ð1Þ

where U(x ,t) is the velocity of gas phase; x is Euler coordi-
nate; XðpÞa ðtÞ, VðpÞa ðtÞ is position and velocity of a ath parti-
cle; Wa = sag is average relative particle velocity due to
mass force; g is acceleration due to mass force, for example,
gravity; sa is particle relaxation time, which is dependent
on particle relative velocity (see, for example, [10]).

Eq. (1) are present in the Lagrange variables. For pass-
ing from Lagrange variables to Euler variables in Eq. (1),
we definite instantaneous two-point indicator function

Uabðxa;Va; xb;Vb; tÞ ¼ dðxa � XðpÞa ÞdðVa � VðpÞa Þ

� dðxb � X
ðpÞ
b ÞdðVb � V

ðpÞ
b Þ; ð2Þ

where XðpÞa ;X
ðpÞ
b and VðpÞa ;V

ðpÞ
b instantaneous positions and

velocities of ath and bth particles, d(x) is three dimensional
Dirac delta-function.

After definition the function (2) we may speak about dis-
persed phase as a continuum fluid. Distribution of two par-
ticles in space and conditional velocity of ath particles are
expressed through the indicator function (2)

Nabðxa;xb; tÞ ¼ dðxa � XðpÞa Þdðxb � X
ðpÞ
b Þ;

¼
Z

dVa

Z
Uab dVb; ð3Þ

Nab
eVaðxajxb; tÞ ¼ VðpÞa ðtÞdðxa � XðpÞa Þdðxb � X

ðpÞ
b Þ

¼
Z

dVa

Z
VaUab dVb; ð4Þ
where eVaðxajxb; tÞ is conditional velocity of ath particle in
a point xa at the moment of time t provided that bth par-
ticle is located in the point xb at the same moment time.

Distribution of ath particle and unconditional velocity
of dispersed phase of ath particles are follow from expres-
sions (3) and (4)

Naðxa; tÞ ¼
Z

dVa

Z
dVb

Z
Uab dxb

¼
Z

Nabðxa; xb; tÞdxb; ð5Þ

NaVaðxa; tÞ ¼ VðpÞa ðtÞdðxa � XðpÞa Þ

¼
Z

dVa

Z
dVb

Z
VaUab dxb: ð6Þ

It is worth to note, that conditional and unconditional
quantities are not equal

Vaðxa; tÞ 6¼ eVaðxajxb; tÞ:
After averaging over an ensemble of turbulent realiza-

tion from definitions (2)–(6), we obtain averaged two-point
PDF, two-point particle distribution, and averaged velocity
of dispersed phase

Uabðxa;Va; xb;Vb; tÞ
� �

¼ d ðxa � RðpÞa ÞdðVa � VðpÞa Þ
�
� dðxb � R

ðpÞ
b ÞdðVb � V

ðpÞ
b Þ
�
;

N abðxa; xb; tÞ
� �

¼ dðxa � RðpÞa Þdðxb � R
ðpÞ
b Þ

D E
¼
Z

dVa

Z
Uab

� �
dVb; ð7Þ

N ab

� � eVaðxajxb; tÞ
D E

¼ VðpÞa ðtÞdðxa � XðpÞa Þdðxb � X
ðpÞ
b Þ

D E
¼
Z

dVa

Z
Va Uab

� �
dVb: ð8Þ

Instantaneous particle velocity we combine as the sum
of the conditional averaged velocity at the points xa ¼
XðpÞa ðtÞ, xb ¼ X

ðpÞ
b ðtÞ and fluctuating part

VðpÞa ðtÞ ¼ eVaðxajxb; tÞ
D E

þ vðpÞa ðtÞ

¼ eVaðXðpÞa ðtÞjX
ðpÞ
b ðtÞ; tÞ

D E
þ vðpÞa ðtÞ: ð9Þ

We define the fluctuating component of the dispersed
phase velocity with two-point distribution as

Nabva ¼ vðpÞa ðtÞd xa � XðpÞa

� �
d xb � X

ðpÞ
b

� �
: ð10Þ

From relations (3), (4), (9), (10) are follows, that the
value of correlation between two-point particle distribution
and velocity fluctuation of the dispersed phase ath particles
is zero

N abva

� �
¼ vðpÞa ðtÞdðxa � XðpÞa Þdðxb � X

ðpÞ
b Þ

D E
¼ 0:

The previous definition of fluctuating part of particles
velocity (10) corresponds well with the common definitions
of the fluctuating component and PDFZ

dVa

Z
ðVa� Vah iÞ Uab

� �
dVb¼

Z
dVa

Z
va Uab

� �
dVb¼ 0:
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Unconditional particles space distribution and averaged
velocity are following from expressions (5) and (6). The
definition of averaged and fluctuating parts of dispersed
phase was made by analogy as in previous paper [11].

2.2. Derivation of PDF equation

In the terms of fluctuating velocity of dispersed phase,
by similar procedure, as in [11], we write down the equation
for averaged PDF hUab(xa,va,xb,vb,t)i
o Uab

� �
ot

þ ð V a;kh i þ va;kÞ
o Uab

� �
xa;k

� o

va;i
Uab

� � o V a;ih i
ot

þ ð V a;kh i þ va;kÞ
o V a;ih i
oxa;k

�
� Ua;ih i þ sagi � V a;ih i

sa

	
� 1

sa

o

ova;i
va;i Uab

� �
þ ð V b;k

� �
þ vb;kÞ

o Uab

� �
xb;k

� o

vb;i
Uab

� � o V b;i

� �
ot

þ ð V b;k

� �
þ vb;kÞ

o V b;i

� �
oxb;k

�
�

Ub;i

� �
þ sbgi � V b;i

� �
sb

	
� 1

sb

o

ovb;i
vb;i Uab

� �
¼ bA Uab

� �
;

ð11ÞbA Uab

� �
¼ � 1

sa

o

ova;i
uiðxa; tÞUab

� �
� 1

sb

o

ovb;i
uiðxb; tÞUab

� �
:

ð12Þ
The operator bA Uab

� �
in the right hand side of Eq. (11)

describes an interaction between turbulent energy contain-
ing eddies and particles. For obtaining the closed equation
for PDF (11), it is necessary to find closed expression
between turbulent velocity of continuous phase and PDF
hui(xa,t)Uabi and hui(xb,t)Uabi.

We used the assumption about Gaussian approximation
of the random velocity field of gas phase. With the assis-
tance of the method of functional derivative (see, as exam-
ple, [11]) we write down Furutsu–Novikov (Klyatskin [12])
expression for correlation between turbulent fluid velocity
and PDF

uiðxa; tÞUab

� �
¼
Z t

0

dn
Z

uiðxa; tÞujðy; nÞ
� � dUab

dujðy; nÞ


 �
dy;

ð13Þ
where hdUab/duj(y,n)i is functional derivation of the two-
point PDF.

In expression (13) we take into account, that the main part
of intensity of turbulent motion of particles is connected
with energy containing eddies. In this assumption the func-
tional derivation from PDF in (13) have the following form:

dUab

dujðy; nÞ
¼ � oUab

oxa;k

dxðpÞa;kðtÞ
dujðy; nÞ

� oUab

ova;k

dvðpÞa;kðtÞ
dujðy; nÞ

� oUab

oxb;k

dxðpÞb;kðtÞ
dujðy; nÞ

� oUab

ovb;k

dvðpÞb;kðtÞ
dujðy; nÞ

: ð14Þ
Expression (14) takes into account the involving particles
in turbulent velocity fluctuations of carrier phase and ran-
dom particles displacement due to turbulence. The fluctuat-
ing parts of particle velocity vðpÞa;k and its displacement xðpÞa;k

we write down as

vðpÞa;kðtÞ ¼
1

sa

Z t

0

exp � t � s
sa

� 

ukðXðpÞa ðsÞ; sÞds; ð15Þ

xðpÞa;kðtÞ ¼
Z t

0

1� exp � t � s
sa

� 
� 	
ukðXðpÞa ðsÞ; sÞds: ð16Þ

Functional derivations from particle velocity and its
displacement we calculate with assistance of expressions
(15) and (16) (see, as example, [11])

dvðpÞa;kðtÞ
dujðy; nÞ

¼ djk

sa
exp � t � n

sa

� 

dðy� XðpÞa ðnÞÞ; ð17Þ

dxðpÞa;kðtÞ
dujðy; nÞ

¼ djk 1� exp � t � n
sa

� 
� 	
dðy� XðpÞa ðnÞÞ; ð18Þ

where djk is Kroneker delta.
As a result of substitution expressions (14), (17) and

(18) into Eq. (13), we find expression for correlation
hui(xa,t)Uabi

uiðxa; tÞUab

� �
¼ � uiuj

� �
fa

o Uab

� �
ova;j

� uiuj

� �
saqa

o Uab

� �
oxa;j

� uiuj

� �
fbja

o Uab

� �
ovb;j

� uiuj

� �
sbqbja

o Uab

� �
oxb;j

:

ð19Þ

Here huiuji is second one-point moment of fluctuating
velocity of gas phase, fa, qa, fbja, qbja are unconditional
and conditional response function of particles which
describe entrainment of particles in turbulent fluctuation
of the carrier phase

fa uiuj

� �
¼ 1

sa

Z t

0

exp � t � n
sa

� 

uiðxa; tÞuj XðpÞa ðnÞ; n

� �� �
dn; ð20Þ

qa uiuj

� �
¼
Z t

0

1� exp � t � n
sa

� 
� 	
uiðxa; tÞuj XðpÞa ðnÞ; n

� �� �
dn;

ð21Þ
fbja uiuj

� �
¼ 1

sb

Z t

0

exp � t � n
sb

� 

uiðxa; tÞuj X

ðpÞ
b ðnÞ; n

� �D E
dn;

ð22Þ
qbja uiuj

� �
¼
Z t

0

1� exp � t � n
sb

� 
� 	
uiðxa; tÞuj X

ðpÞ
b ðnÞ; n

� �D E
dn:

ð23Þ

Functions fa, qa in (20), (21) are unconditional; they
depend only on the trajectory ath particle. Functions fbja,
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qbja in (22), (23) are conditional, they depend on trajectory
of bth particle, provided that particle a is located at
the point xa at the moment of time t. From expressions
(22) and (23) it can be expect, as the distance between
particles increases, the conditional response function of
particles decrease and the intensity of the relative motion
of particles are determined only by the chaotic motion of
the individual particles.

After substitution Eq. (19) in Eq. (12) we obtain closed
form for expression describing the interaction of turbulence
with two statistically connected particles

bA Uab

� �
¼ uiuj

� � fa

sa

o2 Uab

� �
ova;iova;j

þ uiuj

� �
qa

o2 Uab

� �
ova;ioxa;j

þ uiuj

� � fb

sb

o2 Uab

� �
ovb;iovb;j

þ uiuj

� �
qb

o2 Uab

� �
ovb;ioxb;j

þ uiuj

� � fbja

sa
þ fajb

sb

� 

o

2 Uab

� �
ova;iovb;j

þ uiuj

� � sb

sa
qbja

o
2 Uab

� �
ova;ioxb;j

þ uiuj

� � sa

sb
qajb

o
2 Uab

� �
ovb;ioxa;j

:

ð24Þ

Eq. (11) with expression (24) generates the closed form
of PDF for two stochastically connected particles. The
one-point PDF equation may be written down on the basis
of the two-point equation for PDF (11), (24) as a result of
integration over the variables xb, vb. This one-point equa-
tion is similar to the closed equation for PDF received ear-
lier in [11].
2.3. Solution the PDF equation for uniform flow

In the case of steady uniform turbulent flow uiuj

� �
¼

dij u2
i

� �
equation for PDF of particles velocities uab(va,vb)

follows from (11), (12) and have the form

� 1

sa

o

ova;i
va;i uab

� �
� 1

sb

o

ovb;i
vb;i uab

� �
¼

r�a;ii
sa

o2 uab

� �
ova;iova;i

þ
r�b;ii
sb

o2 uab

� �
ovb;iovb;i

þ 1

sa
þ 1

sb

� 

r�ab;ii

o2 uab

� �
ova;iovb;i

:

ð25Þ

Here intensities of turbulent motion of particles in uni-
form approach are equal

r�a;ii ¼ v2
a;i

D E
¼ fa

sa
u2

i

� �
;

r�b;ii ¼ v2
b;i

D E
¼ fb

sb
u2

i

� �
;

r�ab;ii ¼ va;ivb;i

� �
¼ 1

sa
þ 1

sb

� 
�1 fbja

sa
þ fajb

sb

� 

u2

i

� �
:

ð26Þ
Solution of the Eq. (25) has the form of Gaussian distri-
bution for fluctuation velocities of two particles

uabðva;vbÞ¼
Y3

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�q2

ab

q
Þr�a;iir�b;ii

� exp � 1

2ð1�q2
abÞ

v2
a;ii

r�a;ii
þ

v2
b;ii

r�b;ii
�

2qabva;ivb;i

ðr�a;iir�b;iiÞ
1
2

 !" #
;

ð27Þ
where coefficient of correlation qab between velocity fluctu-
ations of two particles is equal

qab ¼
r�ab;ii

ðr�a;iir�b;iiÞ
1
2

:

In uniform approach the expression for correlation coef-
ficient between velocity fluctuations of two particles is

qab ¼
sbfbja þ safajb

ðsa þ sbÞ
ffiffiffiffiffiffiffiffiffi
fafb

p : ð28Þ

From expression (27) one can find the probability den-
sity distribution of relative velocity wab,i = va,i � vb,i and
mean velocity of two particles vab,i = (va,i + vb,i)/2

uðvabÞ ¼
Z

uabðvab;wabÞdwab

¼
Y3

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p v2

ab;i

D Er exp �
v2

ab;i

2 v2
ab;i

D E
0@ 1A;

v2
ab;i

D E
¼ 1

4
r�a;ii þ r�b;ii þ 2qabðr�a;iir�b;iiÞ

1
2

h i
;

uðwabÞ ¼
Z

uðvab;wabÞdvab

¼
Y3

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p w2

ab;i

D Er exp �
w2

ab;i

2 w2
ab;i

D E
0@ 1A;

w2
ab;i

D E
¼ r�a;ii þ r�b;ii � 2qabðr�a;iir�b;iiÞ

1
2

h i
:

ð29Þ

Here v2
ab;i

D E
and w2

ab;i

D E
square of dispersions of turbu-

lent fluctuations of mean and relative chaotic velocities of
two particles.

In principle, the PDF hUab(xa,va,xb,vb,t)i contains all
information about hydrodynamics parameters of particles
in inhomogeneous turbulent flow. However, it is very diffi-
cult to find the analytical or numerical solution of closed
equation for PDF (11), (24) in a strongly inhomogeneous
turbulence, and we are forced to turn to the system of first
and second moments.

3. Equations for the first and second moments of particles

velocity fluctuations

Out of the PDF Eqs. (11), (24), we can derive by the
standard way the system for moments of dispersed phase
velocity fluctuations.
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The equations for space distribution of two particles and
conditional averaged velocity have the form

o Nab

� �
ot

þ
o N ab

� � eV a;i

D E
oxa;i

þ
o N ab

� � eV b;i

D E
oxb;i

¼ 0; ð30Þ

o eV a;i

D E
ot

þ eV a;k

D E o eV a;i

D E
oxa;k

þ o va;iva;kh i
oxa;k

þ
o va;ivb;k

� �
oxb;k

¼
Ua;ih i þ sagi � eV a;i

D E
sa

� Da;ik

sa

o ln N ab

� �
oxa;k

� 1

sa
ðsa va:ivb;k

� �
þ sbqbja uiukh iÞ

o ln N ab

� �
oxb;k

; ð31Þ

Da;ik ¼ sað va:iva;j

� �
þ qa uiukh iÞ;

where Da,ik is coefficient turbulent diffusion of ath particles.
From Eq. (31) one can see, that conditional averaged

velocity of ath particles statistically depends on parameters
of chaotic motion of bth particles.

The equation for second conditional moments of two
particles velocity fluctuations also follows from Eqs. (11)
and (24)

o va;ivb;j

� �
ot

þ eV a;k

D E o va;ivb;j

� �
oxa;k

þ eV b;k

D E o va;ivb;j

� �
oxb;k

þ 1

N ab

� � o N ab

� �
va;ivb;jva;k

� �
oxa;k

þ
o Nab

� �
va;ivb;jvb;k

� �
oxb;k

� 


þ va;ivb;k

� � o eV b;j

D E
oxb;k

þ vb;jva;k

� � o eV a;i

D E
oxa;k

¼ 1

sa
þ 1

sb

� 

r�ab;ij � va;ivb;j

� �� �
;

r�ab;ij ¼
1

sa
þ 1

sb

� 
�1 fbja

sa
þ fajb

sb

� 

uiuj

� �
; ð32Þ

where r�ab;ij is correlation between velocity fluctuations of
two particles in uniform approach.

Three first terms in the left hand side of Eq. (32) describe
the nonstationary and convection effects due to averaged
velocities of particles a and b types. Third moments in
Eq. (32) present the turbulent transfer of second moments
of particles velocity fluctuations. Terms with gradients
from averaged particles velocities are generation the turbu-
lent motion in dispersed phase. The term in the right hand
side of Eq. (32) is source of particles turbulence due to
involving of particles in motion of energy containing
eddies.

From Eqs. (30)–(32) it can be seen, that space distribu-
tion of particles and conditional averaged velocity depend
upon coordinates of both particles. The averaged parame-
ters of a pair of particles depend on the mean xab =
(xa + xb)/2 and relative yab = xa � xb coordinates. The
scale of variation of the averaged parameters with respect
to the relative coordinate yab is substantially less than that
with respect of the mean coordinate xab. From Eqs. (30)–
(32) and defined relative variable yab follow equation for
relative distribution of particles in space and expression
for relative averaged velocity of two particles
o Nab

� �
ot

þ
o Nab

� �
W ab;i

� �
oyab;i

¼ 0;

Wab

� �
¼ eVa

D E
� eVb

D E
; ð33Þ

W ab;i

� �
¼ ðW a;i � W b;iÞ � Dab;ik

o N ab

� �
oyab;k

þ ðsa þ sbÞ
o va;ivb;k

� �
oyab;k

; ð34Þ

Dab;ik ¼ Da;ik � sað va;ivb;k

� �
þ qajb uiukh iÞ

þ Db;ik � sbð va;ivb;k

� �
þ qbja uiukh iÞ: ð35Þ
Here, Dab,ik is the coefficient of relative turbulent diffu-
sion between two particles; Wab is averaged relative veloc-
ity between particles.

We note that with increasing in the distance between
particles, movement of the particles becomes uncorrelated,
and the relative diffusion coefficient Dab,ik tends to the
sum of the diffusion coefficients of the individual particles.
The relative particle velocity is determined not only by the
difference between the relative velocity due to the mass
force (first term in the right hand side of Eq. (34)) but also
by the gradients of the particles space conditional distri-
bution (second term in the right hand side of Eq. (34)).
Second term in the right hand side of Eq. (34) describes
the relative diffusion of two particles. Last term in the
right hand side of Eq. (34) depends on gradient of inten-
sity of particles velocities correlation. This effect is analo-
gous to the effect of turbophoresis in the case of
individual particles in bounded flow [11]). From (33),
(34) follow the equation for distribution of a pair of par-
ticles in space
o Nab

� �
ot

þ o

oyab;i

ðW a;i�W b;iÞþðsaþ sbÞ
o va;ivb;k

� �
oyab;k

" #
Nab

� �( )

¼ o

oyab;i

Dab;ik
o Nab

� �
oyab;k

" #
: ð36Þ
Eq. (36) is similar to diffusion equation in the space of
relative distances between two particles. Eq. (36) includes
the relative velocities between particles due to mass force
and relative diffusion between particles (term in right hand
side (36)). The term in the left hand side of (36) with deri-
vations from second moments of different particles velocity
fluctuations can be interpret as additional turbophoretic
force between particles. Explanation of this effect is follow-
ing. Approaches of particles with each other increase the
correlation between particles random velocities, so the gra-
dient of second moments in (36) is negative. In [8] this turb-
ophoretic force is used for explanation the preferential
concentration of particles in isotropic turbulence.
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The equation for second moment of two particles veloc-
ity fluctuation in the relative variables have the form

o va;ivb;j

� �
ot

þ W ab;k

� � o va;ivb;j

� �
oyab;k

þ 1

Nab

� � o Nab

� �
va;ivb;jwab;k

� �
oyab;k

þ va;ivb;k

� � o eV b;j

D E
oxa;k

þ vb;jva;k

� � o eV a;i

D E
oxb;k

¼ 1

sa
þ 1

sb

� 

ðr�ab;ij � va;ivb;j

� �
Þ; ð37Þ

where wab,k = va,k � vb,k is fluctuation of relative velocity
between particles.

From Eq. (37) it can be seen that the convective term
with averaged relative velocity and the turbulent transport
due to the relative fluctuating velocity of particles, as well
as term associated with the generation of random motion
of particles due to gradient of averaged dispersed phase
velocity, contribute to the correlation of particles velocity
fluctuations.

4. Calculation of particles response function

4.1. Unconditional response functions

Expressions (20) and (21) depend upon the gas velocity
correlation along the trajectory of individual particle. At
the moment of time t the ath particle should pass trough
the point xa. Along a trajectory of the ath particle reason-
ably representation is valid

xa ¼ XðpÞa ðtÞ ¼ XðpÞa ðt � nÞ þ XðpÞa ðnÞ:
The expression for fluctuation of velocity of carrier

phase along the particle trajectory have a following from
above formula

uiðxa; tÞuj XðpÞa ðnÞ; n
� �� �

¼ uiðxa; tÞuj xa � XðpÞa ðt � nÞ; n
� �� �

;

ð38Þ
In the approximation of local homogeneous and station-

ary turbulence the following representation for two-points
and two-times correlation function of gas velocity fluctua-
tion is fair

uiðx1; t1Þujðx2; t2Þ
� �

¼ uiuj

� �
WEðx1 � x2; jt1 � t2jÞ; ð39Þ

where WE(x,t) is Euler correlation function in the coordi-
nate frame moving with the carrying phase averaged
velocity.

With the assistance of expressions (38) and (39) we
obtain the representation for fluid velocity correlation
function along the particle trajectory WðpÞa ðsÞ
uiðxa; tÞuj XðpÞa ðnÞ;n
� �� �

¼ uiuj

� �
WE XðpÞa ðtÞ�XðpÞa ðnÞ; t�n
� �� �

¼ uiuj

� �Z
d ya�XðpÞa ðsÞ
� �

WEðya;sÞ
� �

dya

¼ uiuj

� �
WðpÞa ðsÞ; ð40Þ
where XðpÞa ðsÞ is relative distance of particle transfer in the
coordinate frame fixed with gas averaged velocity hUi.

In the course of independent averaging hypothesis by
Corrsin [9,10] we write the expression for correlation of
gas velocity fluctuations along the random trajectory of
particle in (40)

WðpÞa ðsÞ ¼ uiuj

� � Z
Gaðya; sÞh iWEðya; sÞdya; ð41Þ

where Gaðya; sÞh i ¼ d ya � XðpÞa ðsÞ
� �� �

is probability density
function of particle transfer to the distance ya during inter-
val of time s = t � n.

The formula (41) mean, that gas velocity correlation
WðpÞa ðsÞ includes all particle trajectories, which reach the
space point xa during interval of time s = t � n. Averaging
in the right hand side of (41) is executed over the ensemble
of random particle trajectories and over the ensemble of
gas turbulent velocity fluctuations. The procedure of the
function hGa(ya,s)i calculation is presented in Appendix A.

The expression for response functions (20) and (21) for
the ath particle may be written as

fa ¼
1

sa

Z t

0

exp � s
sa

� 

WðpÞa ðsÞds;

qa ¼
Z t

0

1� exp � s
sa

� 
� 	
WðpÞa ðsÞds:

ð42Þ

In account of expressions (42) the formula for coefficient
of turbulent diffusion of particles in Eq. (31) becomes

Da;ii ¼ u2
i

� � Z t

0

WðpÞa ðsÞds: ð43Þ

From (43) we conclude that coefficient of diffusion of
particles is function of gas velocity correlation along parti-
cle trajectory.
4.2. Conditional response functions

The main idea used at calculation of conditional
response functions (22) and (23) we shall explain on an
example of function fbja

fbja uiuj

� �
¼ 1

sb

Z t

0

exp � t� n
sb

� 

uiðxa; tÞuj X

ðpÞ
b ðnÞ;n

� �D E
dn;

In the last expression conditional gas velocity correla-
tion depends on a random trajectory of bth particle pro-
vided that ath particle at the moment of time t occupies
position xa. Relative displacement of bth particle can be
presented as

xa � X
ðpÞ
b ðnÞ ¼ xa � XðpÞa ðnÞ þ Y

ðpÞ
ab ðnÞ;

where Y
ðpÞ
ab ðnÞ ¼ XðpÞa ðnÞ � X

ðpÞ
b ðnÞ is instantaneous relative

distance between particles at the moment of time n.
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Conditional gas velocity correlation along a trajectory
of bth particle can be written as

uiðxa; tÞuj X
ðpÞ
b ðnÞ; n

� �D E
¼ uiuj

� � Z
dya

Z D
d ya � XðpÞa ðsÞ
� �

�d Yab � Y
ðpÞ
ab ðnÞ

� �
WE ya þ Yab; s
� �E

dYab

¼ uiuj

� �
WðpÞbjaðs; yabÞ; ð44Þ

where s = t � n and yab = xa � xb is relative distance be-
tween particles at the moment of time t.

The expression (44) is written in the coordinate frame
moving with averaged gas velocity. Conditional correlation
of carrier phase velocity fluctuation in (44) WðpÞbjaðs; yabÞ is a
result of averaging over the ensemble of random realiza-
tions of two particle trajectories and over the ensemble of
turbulence realizations. In the sense of suggestion by Corr-
sin [9,10] we rewrite (44) in the following form:

WðpÞbjaðs; yabÞ ¼
Z

dya

Z
Gaðya; sÞh i Gabðyab; tjYab; nÞ

� �
�WEðya þ Yab; sÞdYab; ð45Þ

where Yab is relative distance between particles at the
current time n; hG(yabtjYab,n)i is conditional probability
density function for relative displacement of particles.

The expression (45) means, that the conditional gas
velocity correlation WðpÞbjaðs; yabÞ includes contribution of
two types of random trajectories. Fist, the contribution
of ath particle random trajectories, which reach the space
point xa at the moment of time t. And second, relative tra-
jectories between ath and bth particles provided, that rela-
tive distance between two particles will be yab = xa � xb at
the moment of time t.

In (45) function hG(yabtjYab,n)i takes into account all
trajectories of two particles during time t P n� sa, sb

which will be separated on the distance yab at the moment
of time t. Calculation of function hG(yabtjYab,n)i is
described in Appendix A.

In the sense of conditional gas velocity correlation func-
tion WðpÞbjaðs; yabÞ the conditional response functions fbja and
qbja in (22), (23) are depends on relative distance yab, and
have the following form:

fbjaðyabÞ ¼
1

sb

Z t

0

exp � s
sb

� 

WðpÞbjaðs; yabÞds;

qbjaðyabÞ ¼
1

sb

Z t

0

1� exp � s
sb

� 
� 	
WðpÞbjaðs; yabÞds:

ð46Þ

For inertial particles sa � sb� TE, as we can see from
(A.16) and (A.18), the function hGab(yab,tjYab,n)i is
decrease as Gab

� �
/

ffiffiffiffiffiffiffiffiffiffiffiffi
T E=sa

p
. In that case response function

fbja in (46) reduced as fbja / (TE/sa)3/2 , and coefficient of
particles velocity correlation (28) qab! 0. This result
reflects the fact, that chaotic motion of inertial particles is
uncorrelated. Increasing the relative distance yab between
particles leads to decreasing correlation between particles
and causes reduction of conditional response functions (46).
Expression for coefficient of relative turbulent diffusion
of two particles follows from (35) and (46)

Dab;iiðyabÞ ¼
Z t

0

WðpÞa ðsÞ �WðpÞajbðs; yabÞ
h i

ds

þ
Z t

0

WðpÞb ðsÞ �WðpÞbjaðs; yabÞ
h i

ds: ð47Þ

Coefficient of relative diffusion of two particles (47)
depends on relative distance yab. Turbulent motions of
inertia less particles on a small distance yab are well corre-
lated and coefficient of relative diffusion tends to zero.
Increasing the distance yab destroys correlation between
turbulent motion of the particles and relative diffusion
coefficient increases.

5. Approximation of gas velocity correlations along

particles trajectories

The Euler correlation function in Eq. (39) we approxi-
mate in the form, which is corresponds to energy contain-
ing eddies
WEðy; sÞ ¼ exp � y
LE

� s
T E

� 

: ð48Þ
After substitution (48) into expression (41) we write
down expression for unconditional gas velocity correlation
along a particle trajectory

WðpÞa ðsÞ ¼ e�
s

T EwðLE;Da;W aÞ: ð49Þ

In (49) the dispersion Da is function of time s (see
Appendix A), and for s = 0 the value WðpÞa ðsÞ ¼ 1. Function
w(LE,Da,Wa) in (49) is definite in Appendix B and has an
enough complex structure that complicates calculations.
Below we shall suggest simple formula for correlation (49).

For convenience further statement we define dimension-
less parameters. Parameter of particle inertia we will calcu-
late as ratio between particles dynamic relaxation time and
Euler integral time scale Xa = sa/TE. In some publications
(for example, [7,8]) the parameter of particles inertia Xa is
denotes as Stokes number of particles.

Crossing trajectory effect we will account with the
help of parameter ca = Wa/u [14]. Turbulent temporary
scales in Lagrange and Euler variables are different (see,
for example, [10,13]). And we define the ratio between
Lagrange and Euler integral time scales as l = TL/TE (TL

is Lagrange time scale calculated along the trajectory of
inertia less fluid particle). The structural parameter of tur-
bulence, which is depends on flow types (see, for example,
[10]) we denote as v = uTE/LE. Nondimensional relative
mean square turbulent velocity between particle we denote
as w�ab ¼ wab=u. Nondimensional time we denote as s� =
s/TE and Y �ab ¼ yab=LE is nondimensional distance between
particles.
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We calculate the integral time scale of fluid velocity cor-
relations along a particle path

T a ¼
Z 1

0

WðpÞa ðsÞds: ð50Þ

For particles without inertia Xa! 0 and average veloc-
ity slip ca! 0 we calculate the ratio between Lagrange and
Euler integral time scales l � 0.6. The calculation was
made with account Eqs. (49), (A.8)–(A.11) in the assump-
tion v = 1. For inertial particles with velocity slip function
(49) and time scale (50) are depend on parameters Xa and
ca. For inertial particles Xa� 1 correlation function
WðpÞa ðsÞ tends to Euler correlation (48) (see Appendix A)
and integral time scale (50) aspires to TE.

We suggest simple exponential approximation of gas
velocity correlation WðpÞa ðsÞ along a particle trajectory

WðpÞa ðsÞ ¼ exp � s
T a

� 

: ð51Þ
Fig. 1. Correlation functions: (1) Euler correlation; (2) Lagrange corre-
lation; (3)–(5) correlation functions along a particle path. Solid lines are
exact expression (49), dash lines are exponential approximation (51).

Fig. 2. Dependence the response functions (44) on particles inertia for
various nondimensional velocities slip.
In Fig. 1 are shown correlation functions in exact pre-
sentation (49) and exponential approximation (51). One
can see that Lagrange correlation function decreases rap-
idly than Euler correlation function. The increasing particle
average velocity slip leads to decreasing the value of veloc-
ity correlation function along particle trajectory, which
reflect decreasing contact time between particle and turbu-
lent energy containing eddies. The consent of two ways of
correlation representations is satisfactory.

Fig. 2 illustrates influence of particle inertia and average
velocity slip on particle response function (44). The param-
eter of particle inertia Xa and parameters of crossing trajec-
tory effect ca diminish the intensity of particle turbulent
motion.

6. Calculation results

In nondimensional variables correlation coefficient
between particles velocities (28) have the following form:

qab ¼
Xbfbja þ Xafajb

ðXa þ XbÞ
ffiffiffiffiffiffiffiffiffi
fafb

p : ð52Þ

For calculation the value of particles correlation coeffi-
cient (52) was build iteration procedure with numerical
integration of expressions (44), (49) and numerical integra-
tion of expressions (47), (49), where was used (A.20) and
(A.21). The behavior of correlation coefficient as a function
of nondimensional relative distance between two identical
particles is shown in Fig. 3. The correlation between parti-
cles motion monotonically decrease with increasing relative
distance. For small distance between particles correlation
coefficient is reduced with particles inertia. Correlation
coefficient of inertial particles is more pronounced on lar-
ger distance Y �ab than for particles with lesser inertia.
Fig. 4 presents correlation coefficients between two parti-
cles as a function of particles inertia. One can see, that tur-
bulent motion of particles with small inertia X�1

a � 1 are
well correlated qab! 1. For particles with sufficient inertia
Fig. 3. Correlation coefficient of two identical particles with various
inertia and velocity slip as a function of relative distance between particles.



Fig. 6. Influence of average particles velocity slip on turbulent relative
velocity between particles.

Fig. 4. Influence parameter of inertia of two identical particles on
correlation coefficient. Points are LES results [6].
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X�1
a � 1 correlation between particles motion is destroyed.

Correlation between particles with small inertia falls
rapidly with increasing relative distance Y �ab. For inertial
particles correlation is preserve on sufficiently larger dis-
tances. The results of our calculations are well coordinated
with LES data [6].

Tendencies in behavior of correlation of two particles
are reflect the dependence of mean square turbulent rela-
tive velocity between particles (Fig. 5). For well correlated
motion of small inertia particles X�1

a � 1 turbulent relative
velocity monotonically tends to zero. For very inertial par-
ticles X�1

a � 1 the relative turbulent velocity also decreases.
This tendency one can explain as a result of decreasing the
entrainment of inertial particles in turbulence. So, we san
see the maximum value of turbulent relative velocity in
the diapason of particles inertia Xa � 1. Relative distance
between small inertia particles rapidly destroys correlation
in particles motion, which leads to increasing the relative
velocity. Turbulent motion of inertial particles is correlated
along the larger distances between particles, and chaotic
relative velocities between particles is less depends on
Y �ab. Fig. 6 illustrates influence of particles velocity slip
Fig. 5. Dependence of two identical particles turbulent relative velocity on
particles inertia. Points are LES results [6].
on turbulent relative velocities between particles. The
increasing of velocity slip diminishes entrainment of parti-
cles into turbulence and decrease intensity of relative tur-
bulent velocity. Data of LES [6] on Figs. 5 and 6 confirm
results of our calculations.

Coefficient of particle diffusion (43) is calculated with
the help of numerical integration the expression (49).
Results of our calculations are shown on Fig. 7. On the fig-
ure we present the diffusion coefficient in homogeneous
approach Da, so we dropped indexes of coordinates. The
diffusion coefficient monotonically decreases with increas-
ing average particles velocity slip. This crossing trajectory
effect is accounted in the well known Csanady approxima-
tion [15]. The diffusion coefficient of inertial particles with
small velocity slip is larger than diffusion coefficient of iner-
tia less particles. This tendency is explained as a result of
aspiration integral time scale along trajectory of inertial
particles (50) to Euler time scale TE > TL.

The behavior of relative diffusion of two identical parti-
cles illustrates Figs. 8 and 9. On the Fig. 8 is shown influence
Fig. 7. Particle diffusion coefficients as a function of nondimensional
velocity slip. Dashed line is Csanady approximation [15].



Fig. 9. Dependence of coefficient of relative diffusion on a distance
between particles. Dashed lines are usual coefficient of particles diffusion.

Fig. 8. Dependence of relative diffusion coefficients between two identical
particles on particles inertia. Dashed lines are usual turbulent diffusion
coefficient of particles.
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of particles inertia on relative diffusion. One can see, that
for small inertia particles there no relative turbulent diffu-
sion. Increasing particles inertia leads to increasing relative
Fig. 10. Relative turbulent velocities between two particles with various diam
diameters (b).
diffusion, which can be explained as a result of decreasing
the correlation motion between inertial particles. Value of
relative diffusion coefficient is decreases as a function of
averaged velocity slip, which is connected with crossing tra-
jectory effect. During distraction a turbulent correlation
between particles the coefficient of relative diffusion aspires
to the sum of turbulent diffusion coefficients Da. Tendency
of increasing the relative turbulent diffusion between parti-
cles we can see on the Fig. 9. Increasing relative distance
between particles leads to increasing coefficient of particles
relative turbulent diffusion. For small inertia particles the
growth of the relative diffusion is more rapidly then with
larger inertia. Particles velocity slip diminishes both coeffi-
cients of turbulent diffusion.

We calculate the mean square turbulent relative veloci-
ties between water droplets in the typical atmospheric con-
ditions in the gravity field. The turbulent energy dissipation
rate was selected as e = 50 W/kg, turbulent Reynolds num-
ber, calculated on Taylor micro scale, was set as Rek = 300.
Estimation the particles relaxation time, sedimentation
velocity and other parameters of turbulence is conducted
with the help of [10]. In Fig. 10(a) one can see picture of
turbulent relative velocities between particles of different
sizes. Relative velocity between small droplets decreases
to zero. For large droplets with sufficiently inertia and
velocity slip the intensity of turbulent motion decrease.
For two droplets with noticeable difference in sizes the
intensity of relative motion is determined by intensity of
chaotic motion of droplet with lesser diameter. In
Fig. 10(b) is shown the nondimensional turbulent relative
velocities between droplets with equal diameters. We can
see the common tendencies. Motion of small droplets are
well correlated, increase in the droplet sizes leads to
increasing turbulent relative velocity between droplets.
For large droplets relative velocity decreases, this fact is
explained as a result of general reduction chaotic motion
of the droplets.

Coefficient of relative turbulent diffusion of two droplets
in the atmospheric conditions is shown on the Fig. 11.
eters (a). Relative turbulent velocities between two particles with equal



Fig. 11. Coefficient of relative turbulent diffusion between two particles with various diameters (a). Coefficient of relative turbulent diffusion between two
particles with equal diameters (b).
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Fig. 11(a) presents the coefficient of relative turbulent dif-
fusion for droplets with different diameters. For very small
droplets the coefficient of diffusion tends to zero value.
Turbulent motion of droplets with greater diameters is less
correlated and coefficient of turbulent relative diffusion
increases. The influence of crossing trajectory effect on
coefficient of relative turbulent diffusion is noticeable on
Fig. 11(b). For larger droplets the coefficient of diffusion
decreases because sufficient velocities slip due to gravita-
tional field.
7. Conclusions

PDF approach for describing relative motion of parti-
cles with different sizes in inhomogeneous turbulence is
created. The closed system of equation for mass transfer
due to turbulent relative motion of particles is obtained.
Closed expressions for intensity of chaotic relative
motions of particles and relative turbulent diffusion are
found. Influence of particles relaxation times, averaged
velocity slips and turbulence parameters is investigated.
The results of calculation illustrate the main features of
relative motion of particles in the wide diapason of dis-
persed phase parameters.

In the next paper in the atmospheric conditions coagula-
tion process of particles with different diameters will be
considered.
Appendix A. Probability density functions for particles

displacement

For describing transfer of two particles in the turbulent
gas flow we introduce indicator function, which represent
the particles coordinates x0a; x

0
b and velocities V0a;V

0
b at

moment of time t 0 provided that at the previous moment
of time t00 < t 0 the coordinates and velocities of the particles
was x00a; x

00
b and V00a;V

00
b respectively
Gabðx0a;V0a; x0b;V0b; t0jx00a;V00a; x00b;V00b; t00Þ
¼ d x0a � XðpÞa ðt00Þ
� �

d V0a � VðpÞa ðt0Þ
� �

d x00a � XðpÞa ðt00Þ
� �

� d V00a � VðpÞa ðt00Þ
� �

� d x0b � X
ðpÞ
b ðt0Þ

� �
� d V0b � V

ðpÞ
b ðt0Þ

� �
dðx00b � X

ðpÞ
b ðt00ÞÞd V00b � V

ðpÞ
b ðt00Þ

� �
:

After averaging function Gab over the ensemble of tur-
bulent realizations we obtain probability of particles trans-
fer from initial conditions x00a; x

00
b, V00a;V

00
b at the moment of

time t00 to the subsequent point x0a; x
0
b, V0a;V

0
b at the moment

of time t 0 > t00.
Equation for indicator function Gab follows from equa-

tions for particles motion in Lagrange variables (1) and
have the form

oGab

ot
þ V a;k

oGab

oxa;k
þ V b;k

oGab

oxb;k

þ o

oV a;k

U kðxa; tÞ þ W a;k � V a;k

sa
Gab

� 	
þ o

oV b;k

U kðxb; tÞ þ W b;k � V b;k

sv
Gab

� 	
¼ 0: ðA:1Þ

Initial condition for function Gab have a standard form

Gabðx0a;V
0
a; x

0
b;V

0
b; t
00jx00a;V

00
a; x

00
b;V

00
b; t
00Þ

¼ dðx0a � x00aÞdðVa � V�aÞdðx0b � x00bÞdðV0b � V00bÞ: ðA:2Þ

Solution of Eq. (A.1) with initial condition (A.2) may be
factorized as

Gabðx0a;V
0
a; x

0
b;V

0
b; t
0jx00a;V

00
a; x

00
b;V

00
b; t
00Þ

¼ Gaðx0a;V
0
a; t
0jx00a;V

00
a; t
00Þ � Gbðx0b;V

0
b; t
0jx00b;V

00
b; t
00Þ:
ðA:3Þ

Here the two factors in the left hand side (A.3) are indi-
cator functions for each particle. For example indicator
function in (A.3) for a particle have the following form



4302 I.V. Derevich / International Journal of Heat and Mass Transfer 49 (2006) 4290–4304
Gaðx0a;V
0
a; t
0jx00a;V

00
a; t
00jÞ

¼ exp 3
t0 � t00

sa

� 

d

(
x0a� x00aþ saðV0a�V00aÞ �Waðt0 � t00Þ

�
Z t0

t00
UðXaðfjx0a;V0a; t0Þ; fÞdf

)

� d

(
V0a exp

t0 � t00

sa

� 

�V00aþWa 1� exp

t0 � t00

sa

� 
� 	

� 1

sa

Z t0

t00
exp

f� t00

sa

� 

UðXaðfjx0a;V0a; t0Þ; fÞdf

)
: ðA:4Þ

In (A.4) conditional displacement of particle Xaðfjx0a;
V0a; t

0Þ in integral terms means that particle travels during
time interval f � t00 under condition that at the last moment
of time t 0 coordinate and velocity of the particle will be
x0a;V

0
a

Xaðfjx0a;V0a; t0Þ ¼ x0a þ saV0a 1� exp � t0 � f
sa

� 
� 	
þ
Z t0

f
1� exp � f� f0

sa

� 
� 	
�UðXaðf0jx0a;V

0
a; t
0Þ; f0Þdf0:

In expression (A.4) we introduce the fluctuating and aver-
aged velocities of particle and carrier phase Va = hVai + va ,
Ua = hUai + ua. We become attached to the coordinate
frame moving with averaged velocity of carrier phase x!
x � hUit. In the coordinate frame fixed with averaged veloc-
ity of gas the indicator function (A.4) for particle velocity
fluctuations and its relative displacement turn out

Gaðx0a;v0a; t0jx00a;v00a; t00Þ

¼ exp 3
t0 � t00

sa

� 

�d

(
x0a�x00a� sav0a exp

t0 � t00

sa

� 

�1

� 	

�Waðt0 � t00Þ�
Z t0

t00
1� exp

f� t00

sa

� 
� 	
uðXaðfjx0a;v0a; t0Þ;fÞdf

)

�d

(
v0a exp

t0 � t00

sa

� 

� v00a�

1

sa

Z t

t�
exp

f� t00

sa

� 


�uðXaðfjx0a;v0a; t0Þ;fÞdf

)
: ðA:5Þ

After integration the expression (A.5) over the velocity
space v0a we obtain the indicator function for displacement
of ath particle on distance za ¼ x0a � x00a during interval of
time s = t 0 � t00 under condition that at the time point t00

the initial particle velocity is v00a

Gaðx0a; t0jx00a; v00a; t00Þ ¼ Gaðza; sjv00aÞ

¼ d za � sav00a 1� exp � s
sa

� 
� 	
�Was

�
�
Z t0

t00
1� exp � t0 � f

sa

� 
� 	
� uðXaðfjx0a; v0a; t0Þ; fÞdf

�
: ðA:6Þ
Probability density function of particle transfer hGa(za,s)i
follows from (A.6) after averaging over the ensemble of
turbulent realization and ensemble of velocity fluctuations
of particle. With the help of distribution function for
particle velocity fluctuations uabðv00a; v00bÞ (27) we obtain

Gaðza; sÞh i ¼
Z

dv00b

Z
Gaðza; sjv00aÞ
� �

u
uabðv00a; v00bÞdv00a: ðA:7Þ

The subscript u in (A.7) denotes the averaging over
the ensemble of turbulent realization of gas velocity
fluctuations.

With a view of profitability of the manuscript we write
down formulas for probability density functions of particle
transfer in one-dimensional representation.

After integration (A.6) and (A.7) (see Appendix B) we
obtain the following formula for probability density func-
tion of particle turbulent transfer

Gaðza; sÞh i ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pD2

a

q exp �ðza � W asÞ2

2D2
a

" #
: ðA:8Þ

Here D2
a is square of random displacement of particle.

Random displacement of particle depends on time s and
is a sum of particle transition due to turbulent motion of
energetic eddies and inertial transfer of particle with ran-
dom velocity in the previous moment of time

D2
aðsÞ ¼ K2

aðsÞ þ k2
aðsÞ: ðA:9Þ

The first term in the right hand side in (A.9) represents
length of inertial transfer of ath particle

K2
aðsÞ ¼ s2

a v2
a

� �
1� exp � s

sa

� 
� 	2

; ðA:10Þ

where v2
a

� �
is averaged square of particle velocity

fluctuations.
Second term in the right hand side in (A.9) approximate

averaged square length of distance on which the particle is
transferred by turbulent eddies of carrier phase

k2
aðsÞ ¼ 1� exp � s

sa

� 
� 	2

T 2
E u2
� �

; ðA:11Þ

where hu2i is averaged square of gas velocity fluctuations.
For particle with small inertia (sa� TE) we have v2

a

� �
�

u2h i, and from ((A.9)–(A.11)) one can see, that K2
a ! 0.

During the life time of energetic eddies TE the square of
particle transfer is D2

a � T 2
E u2h i. We can conclude that iner-

tia less particle is transferred only by energetic turbulent
eddies. The turbulent parameters of inertia less particle
can be used for estimation Lagrange correlation function.

For inertial particle (sa� TE) intensity of the particle
turbulent motion is lesser than intensity of carrier phase
turbulence v2

a

� �
� u2h iT E=sa. For that case K2

a � T 2
E u2h i

ðT E=saÞ, k2
a � T 2

E u2h iðT E=saÞ2 and D2
a � K2

a ! 0. We con-
clude that relative chaotic motion of inertial particles tends
to zero and hGa (za,s)i ! d(za �Was).
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For determination the probability density function of
relative transfer of two particles we consider indicator
function (A.3) which is depends on initial positions of
particles x�a;x

�
b and initial velocities v�a; v

�
b at the previous

moment of time t� � t 0, t00

Gabðx0a;V0a; x0b;V0b; t0jx�a;V�a; x�b;V�b; t�Þ
¼ Gaðx0a;V0a; t0jx�a;V�a; t�Þ � Gbðx0b;V0b; t0jx�b;V�b; t�Þ

ðA:12Þ

After integration the expression (A.12) over velocity
space v0a; v

0
b we obtain the indicator function which presents

relative distance z0ab ¼ x0a � x0b between two particles at the
moment of time t 0 provided, that in the previous moment
of time t� initial relative distance between particles were
y�ab ¼ x�a � x�b and initial particles velocities were v�a and v�b

Gabðx0a; x0b; t0jx�a; v�a;x�b; v�b; t�Þ
¼ Gaðy0a; t0jv�a; t�ÞGbðy0b; t0jv�b; t�Þ
¼ Gabðz0ab; t

0jy�ab; v
�
a; v
�
b; t
�Þ; ðA:13Þ

where y0a ¼ x0a � x�a and y0b ¼ x0b � x�b are lengths of parti-
cles path from initial coordinates.

Probability density function of relative displacement of

two particles Gabðz0ab; t
0jy�ab; t

�Þ
D E

follows from expression

(A.13) after averaging over the ensemble of turbulent real-
ization of gas velocities and velocities distribution of two
particles uabðv�a; v�bÞ

Gabðz0ab; t
0jy�ab; t

�Þ
D E

¼
Z

dv�b

Z
Gabðz0ab; t

0jy�ab; v
�
a; v
�
b; t
�Þ

D E
u

� uabðv�a; v�bÞdv�b: ðA:14Þ

After calculation (A.14) (see Appendix B) we obtain the
following expression

Gabðzab; t0jy�ab; t
�Þ

D E
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2peD2
ab

q exp �
½zab � y�ab � W abðt0 � t�Þ�2

2eD2
ab

( )
: ðA:15Þ

Here Wab = jWa �Wbj is module of relative averaged
velocities of particles due to mass forces, and eD2

ab is aver-
aged square of total length of distance between particleseD2

ab ¼ K2
ab þ k2

ab:

The expression for square of relative distance between
particles due to their inertia have the form

K2
ab ¼ s2

a v2
a

� �
þ s2

b v2
b

D E
� 2qabsasb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

a

� �
v2

b

D Er
: ðA:16Þ

Expression (A.16) is obtained for interval of time
t 0 � t� � sa,sb. The approximation of square of relative
distance between particles due to motion with turbulent
energy containing eddies have the following form

k2
ab ¼ T 2

E e�
T E
sa � e

�T E
sb

� 
2

u2
� �

: ðA:17Þ
For inertia less particles sa, sb� TE the dispersion of
relative distance between particles aspires to zeroeD2

ab ! 0. This result coincides with conclusion that correla-
tion coefficient qab (28) for inertia less particles tends to
unity, and there no relative velocity between particles.
For inertial particles sa � sb� TE we can see from
(A.17), that the parameter k2

ab � T 2
E u2h iðT E=saÞ3. Inertial

relative transfer between particles with sufficient inertia
(A.16) becomes larger than integral scale of Euler gas
velocity correlation K2

ab � T 2
E u2h iðsa=T EÞ � L2

E. This fact
reflects the statement, that inertial particles save their
dynamic information on distances, which is larger than in
the case of small inertia particles.

For z0ab ¼ yab ¼ xa � xb the expression (A.15) can be
considered as probability density distribution of initial dis-
tance between particles y�ab ¼ x�a � x�b provided, that at the
moment of time t the relative distance between particles
will be yab.

For current time n, which satisfies the conditions
t� < n 6 t and n � t� � sa,sb, expression for probability
density function of relative distance between particles is
analogous (A.15)

Gab Y ab;njy�ab; t
�

� �D E
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2peD2
ab

q exp �
Y ab� y�ab�Wab n� t�ð Þ
h i2

2eD2
ab

8><>:
9>=>;; ðA:18Þ

where Yab is relative distance between particles at the
moment of time n.

Expression for probability density function of relative
distance between particles is Yab at the time n provided,
that relative distance between particles at the moment of
time t will be yab follows from (A.15) and (A.18)

Gðyab; tjYab; nÞ
� �
¼
Z

Gabðyab; tjy�ab; t
�Þ

D E
GabðYab; njy�ab; t

�Þ
D E

dy�ab:

ðA:19Þ
After calculation (A.19) in one dimension (see Appendix

B) we obtain expression for probability density function of
relative distance between particles Yab at the moment of
time n under condition that distance between particles at
the moment of time t is equal yab

Gab yab; tjY ab;n
� �� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pD2

ab

q exp �
Y ab� yab�Wab t�nð Þ
� �2

2D2
ab

( )
;

ðA:20Þ
D2

ab¼ 2eD2
ab¼ 2ðK2

abþk2
abÞ: ðA:21Þ

From (A.20) one can see, that increasing relative dis-
tance between particles yab and module of particles relative
velocities Wab decrease function hG(yabtjYab,n)i and dimin-

ish conditional gas velocity correlation WðpÞbjaðs; yabÞ in (45).
It leads to reduction conditional response function fbja,
that in terns decrease correlation coefficient between parti-
cles qab (28).



4304 I.V. Derevich / International Journal of Heat and Mass Transfer 49 (2006) 4290–4304
It is necessary to note the self-coordinated character of
the expressions (A.20) and (A.21). If we consider one
particle relative distance is absent yab = 0, sa = sb and cor-
relation coefficient in (A.16) is qab = 1. The square of disper-
sion D2

ab ¼ 0 (see expression (A.21)) and function (A.20)
hGab(yab,tjYab,n)i ! d(Yab). From expressions (46) and
(47) one can see, that response functions fbja = fajb! fa.

Appendix B. Calculation of some integrals

We present the results of calculation of some integrals
used in the paper. At determination the probability density
function of particles relative distance it is used the follow-
ing expression

GðY Þ ¼
Z 1

�1
dva

Z 1

�1
uabðva; vbÞdðY � ðava � bvbÞÞdvb;

ðB:1Þ
where function uab(va,vb) present the probability density
function of particles velocity distribution in one dimension

uabðva; vbÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2

abÞrarb

q
� exp � 1

2ð1� q2
abÞ

v2
a

ra
þ

v2
b

rb
�

2qabvavbffiffiffiffiffiffiffiffiffiffi
rarb
p

 !" #
:

ðB:2Þ
Result of substitution (B.2) into (B.1) has the form of

Gaussian distribution

GðY Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pD2

ab

q exp � Y 2

2D2
ab

 !
; ðB:3Þ

where Dab is dispersion of random distance between
particles

D2
ab ¼ a2ra þ b2rb � 2qabab

ffiffiffiffiffiffiffiffiffiffi
rarb
p

: ðB:4Þ
We see from (B.4), that the dispersion of random dis-

tance between particles is reduced with grows the coeffi-
cient correlation qab. For uncorrelated particles qab = 0
square of relative particle distance D2

ab reach a maximum
value, and distribution G(Y) (B.3) becomes wider.

The following integral appears during the calculation of
probability density function of turbulent relative transfer
between two particles

GðY � ZÞ ¼
Z 1

�1

1ffiffiffiffiffiffiffiffiffiffi
2pk2

1

q exp �ðY � yÞ2

2k2
1

" #
1ffiffiffiffiffiffiffiffiffiffi
2pk2

2

q
� exp �ðZ � yÞ2

2k2
2

" #
dy

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pD2
p exp �ðY � ZÞ2

2K2

" #
; K2 ¼ k2

1 þ k2
2

Integral which arise at the calculation of correlation of
gas phase velocity fluctuations along a particle trajectory
have the form

wðL;D; aÞ ¼
Z 1

0

1ffiffiffiffiffiffi
2p
p

D
exp �ðy � aÞ2

2D2

" #
exp � y

L

� �
dy:

After calculation we obtain the factor in the expression
(49) for gas velocity correlation along the particle
trajectory

wðL;D; aÞ ¼ 1

2
exp

D2

2L2
� a

L

� 

erfc

ffiffiffi
2
p D

L
� a

D

� 
� 
�
þ exp

D2

2L2
þ a

L

� 

erfc

ffiffiffi
2
p D

L
þ a

D

� 
� 
	
ðB:5Þ

where erfc(x) = 1 � erf(x) , erfðxÞ ¼ 2ffiffi
p
p
R x

0
e�t2

dt is stan-
dard error function.
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